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J. Phys. A: Math. Gen. 15 (1982) 3725-3736. Printed in Great Britain 

Twisted Goldstone models 

R Laura? and D J Toms$ 
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, UK 

Received 13 May 1982 

Abstract. Symmetry breaking for twisted scalar fields in non-simply connected space-times 
is studied. A general procedure is described whereby an approximation to the ground 
state in the broken phase may be found when the length scales associated with the 
non-trivial topology are close to their critical values at which the phase transition occurs. 
Application to twisted fields in S' x R3 and R'  x RP3 is given. 

1. Introduction 

There is currently much interest in studying symmetry breaking in space-times which 
are different from Minkowski space-time, the ultimate aim being to investigate the 
cosmological consequences in the early universe. In addition to the effects of space- 
time curvature, it is found that a non-trivial topology can also have an effect upon 
vacuum stability, There can be critical length scales (or curvatures) introduced in 
either case at which phase transitions occur. (See Avis and Isham 1978, Banach 1981, 
Critchley and Dowker 1982, Denardo etal 1981, Denardo and Spallucci l980,1981a, 
b, c, 1982, Fawcett and Whiting 1982, Ford 1980, Ford and Toms 1982, Gibbons 
1978, Kennedy 1981, Shore 1980, Toms 1980b, c, 1982a, b, Unwin 1982 for some 
of the features which can arise.) 

Another characteristic of quantum field theory in topologically non-trivial space- 
times is the possible existence of inequivalent types of fields with the same spin (Banach 
and Dowker 1979, Dowker and Banach 1978, Isham 1978a, b). The number of 
inequivalent real scalar fields-defined to be cross-sections of real line bundles over 
a space-time M-is given by the order of the cohomology group H 1 ( M ; Z 2 ) =  
Hom(.rrl(M), 2,) (Isham 1978a). It therefore follows that whenever the space-time 
is non-simply connected, twisted real scalar fields occur which are cross-sections of 
non-product bundles. Typically, these twisted fields satisfy antiperiodic boundary 
conditions so that the only constant such field is the zero field. As a consequence 
symmetry breaking is altered even at the classical level (Avis and Isham 1978) since 
any non-zero ground state is necessarily position dependent. Finding the vacuum 
state when symmetry breaking occurs involves solving nonlinear differential equations, 
a very difficult task in general. 

The effective potential method (Coleman and Weinberg 1973, Weinberg 1973), 
which is normally used to study symmetry breaking beyond the tree-level, may not 
be used for twisted fields (Toms 1980b) since a crucial step in obtaining it involves 
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setting all fields to constants. There have been three main proposals for studying 
symmetry breaking for twisted fields beyond the classical level (Banach 1981, Ford 
1980, Toms 1982). Ford's method includes quantum corrections to the classical field 
equation and then identifies modes which grow with time as unstable. It gives the 
same results as the method of Toms (1982a) which involves studying the eigenvalues 
of the second functional derivative of the effective action (see § 2 below). Banach's 
(1981) approach defines a generalised effective potential by 

where A is a constant, vol(M) is the space-time volume, r is the effective action, and 
cpo(x) is the eigenfunction with the lowest eigenvalue of the space-time derivative 
part of the classical action. V ( A )  is then analysed like an ordinary potential. 

The method described in the present paper is related to that of Banach (1981) 
although our approach is somewhat different. We show how it is possible to find 
approximate solutions to the nonlinear field equations when the characteristic length 
scales in the problem are close to the critical values at which the phase transition 
occurs. We believe that our method clarifies Banach's (1981) paper and explains 
clearly why he found good results as the critical length was approached. A systematic 
procedure is described for going beyond this lowest-order approximation. 
Application to twisted scalar fields in S' x R3 and R' x RP3 is given. 

2. The general method 

Consider a real scalar field whose classical action functional is 

where dv, = ( ~ ( x ) ) " ~  d4x is the invariant volume element, R is the scalar curvature, 
and 6, v, A > O  are constants. We choose for convenience to work in a Riemannian 
space-time rather than a Lorentzian one, although this is not strictly necessary. The 
potential term in (2) is taken to be of the Goldstone (1961), or double-well type. 

The classical (or tree-level) ground states are the solutions cpc(x) to 

~ ~ [ c p l l ~ c p ( x ) l . c = o  

which minimise I[cp]. From (2) the equation of motion is 
(3) 

(4) -Ucpc(x)+SR(x)cpc(x)+A~c(x)[~f(x)-v 2 l = O .  

One way to study the stability of solutions to (4) is to examine the spectrum of 
the differential operator 

S21[(p1/6cp (X')Scp(x )Iqp, = [-Ox + 5R (XI + A  (3cpf ( x ?  - u 2 ) l S ( x ,  x ' )  ( 5 )  
where 6 ( x ,  x ' )  is the biscalar Dirac distribution. We are therefore interested in the 
eigenvalues A N  defined by 

[-a, + @ ( X )  + A  (3Vf ( X )  - U 2 ) ] q ~ ( X )  = A N ~ N ( X ) .  ( 6 )  
If A. denotes the smallest eigenvalue of (6 ) ,  then cpc(x) is an unstable ground state if 
A. < 0, and is locally stable otherwise. 
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In a flat, or more generally in a homogeneous, stationary space-time, the ground 
state will be expected to be a constant solution to (4). It is unstable if 

[R +A(3cpz - v 2 ) < 0 .  (7) 

This has relied on the fact that both the curvature and groupd state are constant. If 
either of these conditions is not met, then finding solutions to (4), as well as analysing 
the stability in (6), becomes much more difficult. 

One important case where a more detailed analysis is necessary occurs when 
twisted scalar fields are considered. For the remainder of this paper we restrict our 
attention to space-times with a constant scalar curvature. If we examine the stability 
of cpc(x) = 0, which is seen to be a solution to (4), it is seen from ( 6 )  to be unstable if 

1; +tR - A v 2 < O  (8) 

where 1; is the lowest eigenvalue of the Laplacian -Ox which is necessarily positive. 
Even in flat space-time (R = O), the fact that 1; > 0 may stabilise a theory which 
would naively be thought of as unstable from the shape of the potential in (2). Both 
1; and R will be functions of the length scales which characterise the geometry. Thus, 
if the quantity on the left-hand side of (8) can assume either sign as these lengths are 
varied, there will be critical values of the length scales at which cpc(x)=O becomes 
unstable. Finding the ground state when cpc(x) = 0 is unstable, requires solving (4). 

We now wish to include one-loop quantum corrections to this classical analysis. 
One way to do it, following Toms (1982a), is to evaluate the one-loop effective action 
using the background field method (De Witt 1965). This leads to, keeping h as a 
loop-counting parameter, 

Here AF is the Feynman propagator defined by 

(-0% +[R)AF(x, x ' ) = S ( X ,  x ' )  

and a shorthand functional notation is adopted in (9) whereby 

Tr(A&)=A J dux A F ( X , X ) ( ~ ~ ' ( X ) - U * ) .  (1 1) 

We now make the assumption that the dominant term in (9) is the n = 1 term. In 
the examples dealt with below this can be guaranteed by taking the appropriate length 
scales to be small. This is analogous to the high-temperature expansion used in finite 
temperature field theory (Dolan and Jackiw 1974, Weinberg 1974). With this approxi- 
mation in mind, we may write the one-loop effective action as 

where terms which are independent of the field have been dropped as they are 
irrelevant for symmetry breaking. Because attention is restricted here to homogeneous 
space-times, AF(x, x )  will be a constant, which we now call AF, and acts just like a 
mass term. (AF(x, x )  is divergent; however, we suppose that the usual renormalisation 
procedure has been carried out with all coupling constants in (12) now taking their 
renormalised values. (For details concerning this see Toms (1982a)J 
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The vacuum state at the quantum level is the solution 'pq to 

6 r['p I IS 'p  (X )lvq = 0 (13) 

which minimises I'. From (12), it is clear that this is equivalent to the classical problem 
provided that we replace u 2  with f i 2  where 

d = v - 3A A F .  (14) 

The ground state is then a solution to (compare (4)) 

-O'p, +[R'pq +A'pq('pqZ - B 2 ) = 0  (15) 
for which the eigenvalues A N  in (compare (6)) 

[-Ux +[R + A ( ~ ' ~ ~ Z - ~ ~ * ) ] ~ N ( X ) = A N ~ N ( X )  

are all non-negative. Critical values of the length scales are defined as solutions to 

i : + [ ~  - h f i 2 = 0  (17) 

where again 1: is the lowest eigenvalue of -Ux. 'p4 = 0 is a solution to (15) which is 
unstable if the left-hand side of (17) is negative. From (14), (17), it is seen that 
quantum corrections can alter the critical lengths from their classical values. 

Assume that there is only one length scale L in the problem. The ground state 
when 'pq = 0 is unstable requires an exact solution to (15), which as we have remarked 
previously, will be very difficult to find in general. Consider the case when L is very 
close to its critical value L,  and write 

L = ( l + & ) L c  (18) 
where 0 s E << 1 is a dimensionless parameter. Take all coordinates to be dimensionless 
and use (18) to obtain 

m 

R=R,+ 1 E"R,, (19a) 
n = l  

m 

n=n,+ c Enon, 
n = l  

00 

u 2 = f i : +  E n f i n .  
n = l  

A subscript c denotes that L has been set equal to L,  in the indicated quantity. From 
the argument presented in the appendix we may also write the solution to (15) as 

(20) 
where 'po and 'pl are independent of E .  By substituting (19a, 6, c ) ,  (20) into (15) and 
equating coefficients of equal powers of E to zero, we are led to an infinite set of 
coupled differential equations, the first two of which are 

' p q  ( X )  = &"2[ 'po(x)  + E ' p l ( X )  + O(E2)1 

- o ~ ~ P ~ + s R ~ P ~ - A B ~ ~ P ~ =  0,  (21) 

- 0 ~ ' p ~ + ~ ~ ~ ~ ~ - ~ f i , 2 ~ ~  = o ~ ~ ~ - ~ R ~ ~ ~ ~ - A ~ ~ + A ~ ~ ~ ~ .  (22) 
Except for (21), all of the resulting equations are inhomogeneous. Their structure 

is such that the equation for 'pn  is linear in cpn  with the inhomogeneous term involving 
'pa,. . . , ( P , , - ~ ;  thus, they may be solved iteratively beginning with (21), a task which 
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involves only linear differential equations in contrast to the original nonlinear differen- 
tial equation in (15). From (21), note that cpo is an eigenfunction of -U, with the 
eigenvalue Afi: - [Rc.  By the definition of the critical length in (17) this eigenvalue 
is seen to be just 1; ;  thus, cpo is an eigenfunction of -0, which has the lowest eigenvalue. 
This is just the object used by Banach (1981) in his generalised effective potential. 
We believe that our method shows clearly why this object occurs as well as the 
limitation of using it; namely, it is only the lowest-order approximation to a series 
expansion about the critical length. As L increases beyond L,, higher and higher order 
terms such as those indicated in (20), (22) become increasingly important. 

Consider first of all the lowest-order contribution to cpq in which only (21) is 
retained. Since this is a homogeneous differential equation the overall scale of the 
solution is not fixed. If Go(x) represents any solution to (21), then 

cpo(x) = $GO(X 1 (23) 

is also a solution, where $ is any constant which is independent of E .  (There will in 
general be more than one linearly independent solution to (21) with the same lowest 
eigenvalue of -Uc; however, these different solutions will be related by an action of 
the isometry group of the space-time so that we may choose any one of them.) The 
coefficient $ in (23) is to be fixed by demanding that the effective action be minimised 
to lowest order in E. This part of the calculation is akin to the variational method in 
ordinary quantum mechanics where a trial wavefunction containing as yet unspecified 
parameters is used to find the energy which is then minimised with respect to the 
parameters. 

From (12), using definition (14), expansions (19a, 6, c),  (20), and the equation of 
motion (21) for cpo, we have 

T [ ~ , ] =  r o + + ~ $ 2 + b $ 4  (24) 

where To is a constant, 

A = E ’ 1 dux [ -GOO1 Go + 5R 4 i - A fil i] + O( E ’), (25) 

B = E ’  I d v , h ~ ~ + O ( ~ ~ ) .  

Expression (24), which may be recognised as Banach’s (1981) generalised effective 
potential, is now minimised with respect to $. Setting (a/a$)T[cp,] = 0 leads to 

(A  +B$’)$ = 0. 

Thus we have $ = 0 or else 

$’ = - A / B .  

Note that 

azr[cp,]/a$’l+c=o =A, 

which shows that the solution for $ given in (28) makes r a minimum if A < O .  (B is 
seen from (26) to be positive, so that A < O  is also necessary in order that (28) yield 
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a real solution for $1. The lowest-order contribution to q q ( x )  is therefore 

q q ( x )  = E ~ ” [ ( - A / B ) ~ ” G ~ ( x ) + O ( E ) ]  (30) 

(either sign may be chosen here). This result is seen to be independent of how Go is 
normalised. 

At the next order in e we must solve (22) where from (23), (28), 

CFO(X) = (-A/B)’/’Go(x) (31) 

appears in the inhomogeneous term. The general solution may be written as 

q 1(x) = q I h ( X )  + $1 (x ) (32) 

where (Plh(X) is the solution to the homogeneous equation (21), and t,b1(x) is any 
particular solution to (22). Because the equation satisfied by $l is inhomogeneous, 
its overall scale is fixed; however ( P l h ( X )  is not so determined. Without loss of generality 
we may choose q l h ( x )  to be proportional to Go(x) with the constant of proportionality 
once again fixed by the requirement that (32) minimises r to lowest order in E .  We 
therefore write 

cp,(x) = E ”2[(-A/B)”2~o(~)+~($~o(~)+$~(~)).tO(~2)]. (33) 

From (12), (14), (33) 

(a’/a$’)r[q,]= e 3  dux G ~ ( - O G ~ + ~ R G ~ - A ~ ~ ’ G ~ + ~ A ~ ~ G ~ ) + O ( E ~ ) .  (35) i 
These two results may be simplified by using the fact that Go and G I  are solutions to 
(21), (22) respectively. Using expansions (19a, h, c )  leads to 

( a i a $ ~ r [ q , ] = e 4 ~ ~ + ~ $ ) + ~ ( E s ~ ,  (36) 

(a’/d$’)r[q,]= E ~ D  + O ( e S ) ,  (37) 
where 

From (36) we find 

$ =-CID (40) 
which from (47) will minimise the effective action to lowest order in E provided that 
D > 0. We therefore conclude that the first two terms in the expansion of the ground 
state are 

~ ~ , ( X ) = ~ ~ ’ ~ { ( - A I B ) ~ ’ ~ G ~ ( X ) + ~ [ - ( C / D ) G O ( X ) + ~ ~ ( X ) I + O ( ~ ~ ) }  (41) 

are any solutions to (21), (22) respectively, and the constants A, B, where Go and 



Twisted Goldstone models 3731 

C, D are given in (25), (26), (38), (39). It is clear how this method may be extended 
to higher orders. 

3. Some examples 

3.1. S1xR3 

Consider flat space-time with one of the spatial coordinates periodically identified to 
give it a topology of S' x R3. The line element is chosen to be 

ds2 = dt2 + a de2  +dy2  + dz2 (42) 

where 0 s 6 s 277, --CO < t ,  y ,  z < +-CO. The constant a represents the radius of the 
circle. Since rl(S' xR3)=Z, it is possible to have a twisted real scalar field which 
satisfies the antiperiodic boundary condition q( t ,  8 + 27r, y ,  z )  = -q ( t ,  8, y, 2). The 
exact solution to the classical equation of motion (4) is known in this case (Avis and 
Isham 1978). The solution to (15)  easily follows, enabling us to test our method 
against a known solution. 

An expression for the coincidence limit of the free Feynman propagator defined 
in (10) may be found in Birrell and Ford (1980) or Toms (1980a). It is 

A F =  -1/96?r2a2. (43) 

b2=u2+(h/32772a2). (44) 

From (14) we therefore have 

Because the twisted field is antiperiodic in e, the lowest eigenvalue of -0 is l i  = 1/4a2. 
The critical radius which follows from (17) is 

U :  = (4Av2)-'(1 - h A / 8 r 2 ) .  (45) 

For a < a,, qq = 0 is locally stable. For a >a , ,  qq = 0 is unstable and symmetry breaking 
occurs. Note that one-loop quantum corrections lead to a decrease in the critical 
radius from its classical value. 

Write a = (1 + & ) a ,  as in (18). Then, 

a' 1 a2 a' a2 o=-+--+-+- 
at2 U' ae2 ay2 az2 

=0,-7 2~ -+2 a2 3E2 T + O ( &  a2 3 ), 
U ,  ae U ,  a6 

e h  3e 2h 0 2  = 62 ____ 
2 + 7 + ~ ( e 3 ) .  16rr a ,  3 2 1 ~  a,  (47) 

We may read off the quantities 8, and 0, by comparison with (196, c ) .  
The expression for G0(x) is the eigenfunction of -U, with the lowest eigenvalue 

of (4a:)-'. It must therefore be static and independent of the y and z coordinates. 
We may choose 

(48) 
where Bo is an arbitrary constant reflecting the rotational invariance of the situation. 

c p ' o ( ~ )  = COS ;(e + 60) 
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The expressions for A and B may be evaluated from (25), (26) to give 

A = - 2 ~ h v ~ ~ ~ V ,  

B = $ ~ A F ~ V ,  

where V = a  1 dt dy dz. The lowest-order contribution to the ground state from 
(30), (31) is 

(ps ( X  ) = (:E ) l i2v COS :(e + eo) ( 5 0 a )  

= ($)”’ u(a/ac-1)1/2 cos t (e+e0) .  (50b)  

Note that the only role played by the quantum correction to this order is to change 
the critical radius. 

In order to obtain the next-order contribution to q4 as given in (41), we require 
a particular solution to (22) where 

cpo(x) = ($)‘/’U cos :(o + e o )  (51) 

appears in the inhomogeneous term on the right-hand side. It may be seen that 

(52) 1 a 112 $;(x)=-J(J) ~ ( 1  -hA/8r2)  COS^&(^+^,) 

solves (22). The constants C and D appearing in (381, (39) may be evaluated to give 
c = 1 8  6 (7) 1 /2  T b 3 ( 1  + 7hh/88r2)  V, 

D =4rhv2V,  

with V = a dt dy d t  as before. From (41) we have 

( P ~ ( X ) = ( $ E ) ~ ’ ~ U  COS:(@ +6,){l -e[S(1+7hA/88r2)  

+ i( 1 - hA/8r2) cos2 $(e + eo)] + O(E 

( 5 3 )  

(54) 

( 5 5 )  

as the approximate ground state to this order. This result may be shown to agree 
with the first two terms in the expansion of the exact result of Avis and Isham (1978) 
(making the replacement u 2  + 0 2 ) .  Note that in addition to changing the critical length, 
quantum corrections also alter the form of the O(e3j2) contribution to (p4. Finally, 
we wish to remark that we could have used the rotational invariance to set eo = 0 in 
(48) if we had wished. It would then not have appeared in ( 5 5 )  although the solution 
above could be regained by invoking the rotational invariance. 

3.2. R1xRP3 

Consider the space-time whose line element is 

ds2 = dt2 + a2[d,y2 + sin’ *(de2 + sin2 8 dq2)]. (56)  
The usual topology is taken to be R1 x S 3 ;  however, as this is simply connected, no 
twisted real scalar fields are allowed. Instead, we may identify antipodal points on 
S 3  to give the spatial section the topology S 3 / &  = RP3, the real projective three-space. 
Since r l ( R ’ X R P 3 ) = Z 2 ,  twisted real scalar fields now exist. If x represents a point 
on S 3 ,  which may be regarded as the surface x x = 1 imbedded in R4, then -x gives 
the point which is antipodal to x. The twisted scalar field satisfies the boundary 
condition q( t ,  -x)  = -(p(t, x) .  In terms of the polar coordinates used in (56) we may 
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write x = (xl, . . . , x4): 

x 1  =sin 8 cos cp sin x, 
x2 = sin 8 sin cp sin x, 
x 3  = cos 8 sin x, (57c) 

x4 = cos x. ( 5 7 4  

The antipodal identification is then ( t ,  x, 8, c p )  - ( t ,  7~ -x, T - 8, 7~ + P I .  
Massless hcp theory has been considered previously in this space-time in Toms 

(1982a). Unwin (1982) has used Banach’s (1981) method to study the twisted 
Goldstone model at the classical level in OB’ x RP3. Here we use the method described 
in 9 2 to find the two lowest-order contributions to the ground state, including the 
effects of one-loop quantum corrections. The lowest-order classical limit of the 
resulting solution agrees with Unwin’s (1982) result. 

For simplicity we shall consider only the conformally coupled theory (6 = i). The 
coincidence limit of the Feynman propagator defined in (10) is (Toms 1982a): 

( 5 8 )  2 2  AF=-1/12v a . 
From (14), 

f i2=u2+h/4T2a2.  (59) 

0 = a2/at2 - A3/a2 (60) 

The d’Alembertian may be written as 

where A3 is the Laplacian on the unit three-sphere. The eigenfunctions of A3 are 
harmonic polynomials in xi  (see (57)) which are homogeneous of degree n, n = 
0, 1 , 2 , .  . . . The associated eigenvalues of A3 are n ( n  +2) .  (See ErdClyi et a1 (1953) 
p 232.) From the boundary condition satisfied by the twisted field, it follows that the 
allowed eigenfunctions of A3 must have an odd degree. The lowest eigenvalue of -0 
is therefore I :  = 3/a2.  From (17) (with 6 = i, R = 6/a2)  the critical radius is found 
to be 

(61) a,  2 = (4/hv2)(1 -hh/16r2).  

For a <a,, cp4 = 0 is locally stable; for a > acr cps = 0 is unstable and symmetry breaking 
occurs. One-loop quantum corrections again decrease the critical radius, although 
this is not a general feature. 

The expression for G0(x), which is the eigenfunction of -0, with the lowest 
eigenvalue, is seen from (60) to be a polynomial in (x l , .  . . , x4) homogeneous of 
degree one. There are clearly four possible choices as given in (57); however as Unwin 
(1982) has discussed, they are all related by an action of the isometry group (in this 
case SO(4) which acts transitively) so that we are free to choose whichever solution 
we like. This is analogous to the previous example where we could take O O = O  in 
(48) by making use of the rotational symmetry. We choose 

&(x)  = cos x. (62) 

By expanding 0, R, C 2  using a = (1 + &)ac, we may read off 

O1 = 2A3/af, 0 2  = -3A3/a:, (6% 6 )  
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R, = -12/af, 

o1 = -h/2ir a,, 

R 2  = 18/af, 

o2 = 3h/4.rr2a,2. 2 2  

It is now straightforward to evaluate the constants A and B given in (25), (26): 

A=-' 2~ A E  a,v , 
B = ' 2  2 3  afl he a,. 

(66) 

(67) 
Since A < 0, the solution (28) for 8 makes the effective action a minimum. From 
(30) the lowest-order contribution to 'ps  is 

(68) 

If q0(x) = 2v cos ,y is substituted into the inhomogeneous term in (22), then a 

(pq(x) = 2V&Ii2 cos x. 

particular solution is found to be 

(69) 2 3 2  3 cLl(x)=-jhv a, cos ,y. 

The constants C and D which enter into the solution (41) are 

Since D > 0, from (37) it is clear that 8 = -CID makes the effective action a minimum. 
The approximate ground state to order E 3'2 is therefore 

(p4 (x = E i2{2v cos ,y + F [ f v  (1 - 1 1 hh/32.rr 2, cos ,y - Zhv 3a f: cos3 ,y ] + O(E ')}. (72) 

In general, if we had chosen any linear combination of the (XI ,  x2, x3, xq) in (57) for 
Go in (62), it is easy to see that we would end up with a solution for ( p q  obtained from 
(72) by the replacement of cos ,y with X;=, aixi where ai  are constants which satisfy 

2 x;=lai  =1. 

4. Conclusions 

In the preceding sections we have presented a method of finding vacuum solutions 
for twisted fields which are approximations to the true ground state, valid when the 
length scale characterising a phase transition is close to the critical value at which 
symmetry breaking occurs. Applications to two examples were given. In one of the 
examples where an exact solution is known, our approach gave perfect agreement 
with the first two terms in the expansion of this solution about the critical length. 

The method presented in the present paper is not confined to twisted scalar fields 
and is applicable to any situation where symmetry breaking leads to a ground state 
which is not a constant. One such case of interest is field theory confined in a spatial 
cavity. 
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Appendix 1 

Consider a group G which acts on a manifold M in such a way that if cp ( x )  is a solution 
to the field equations, so is cp ( g x )  for g E G, x E M. Assume that cp ( g x )  is not identical 
to cp ( x )  for all g,  x ,  but that 

( A l . l )  

where r is the effective action. (In the example in § 3.1 if ~ ( x )  =cos &?, then cp(gx)  = 
cos ;(e +eo). In § 3.2 we may take G = S0(4).)  Write 

g x  = x  +ax, (A1.2) 

cp ( g x )  = cp ( x  1 + Scp ( x  1. (A1.3) 

r[q ( x  )I = ~ E V  wi 

Expand the effective action in a functional Taylor series about a solution cp4(x): 

(A1.4) 

Because of (Al . l ) ,  and our assumption that Scp # 0, this shows that 

s*r[cpii~cp(~)~cpo~’)l,, (A1.5) 

must have a zero mode. If the solution cp4 is not to be unstable, then Ao,  the lowest 
eigenvalue of (A1.5), must be zero. This argument is a generalisation of one in 
Rajaraman (1975). 

The equation whose solution determines the stability of cps was given in (16) as, 

(A1.6) 

(A1.7) 

(A1.8) 

H 0 9 g ’ ( x )  = Ag’VE)(x) .  (A1.9) 

We know that if cpq = 0 is unstable for L = (1  +E)L,  then Abo’ < O  for E > O .  Also, by 
definition of L ,  in (17), we have Abo’ = 0 for E = 0. Expand Ho in powers of E using 
(19a, 6, c ) :  

Ho= hO+Ehl +O(E2).  ( A l .  10) 

= 0 for E = 0, we must have ho9p’  = 0; thus, 

A:’=& Qp’h 1*L0) + O(E 2) .  (Al.11) 

It therefore follows that Abo’ is negative and of order E .  We then add in HI, considered 
as a perturbation; from the argument above we must have 

Abo’ + A b ”  = 0 (A1.12) 

Because A 
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to leading order in E ,  where 

(Al .  13) 

Since HI involves p i  we conclude that gc, = O(E ”’). In fact this argument may be 
used to determine the coefficient 6 of Go in (23) to give a result in agreement with 
that of § 2 above. By using second-order perturbation theory, the coefficient of the 
term of order E ~ ’ ’  in ‘p, may also be obtained in this way. 

Finally, we wish to remark that a more general argument for the behaviour near 
the critical length can be given based on a renormalisation group analysis (see Amit 
1978 and references therein). 
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